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The total amount of rainfall associated with tropical cyclones (TCs)
over a given region is proportional to rainfall intensity and the
inverse of TC translation speed. Although the contributions of
increase in rainfall intensity to larger total rainfall amounts have
been extensively examined, observational evidence on impacts of
the recently reported but still debated long-term slowdown of TCs
on local total rainfall amounts is limited. Here, we find that both
observations and the multimodel ensemble of Global Climate
Model simulations show a significant slowdown of TCs (11% in
observations and 10% in simulations, respectively) from 1961 to
2017 over the coast of China. Our analyses of long-term observa-
tions find a significant increase in the 90th percentile of TC-
induced local rainfall totals and significant inverse relationships
between TC translation speeds and local rainfall totals over the
study period. The study also shows that TCs with lower translation
speed and higher rainfall totals occurred more frequently after
1990 in the Pearl River Delta in southern China. Our probability
analysis indicates that slow-moving TCs are more likely to gener-
ate heavy rainfall of higher total amounts than fast-moving TCs.
Our findings suggest that slowdown of TCs tends to elevate local
rainfall totals and thus impose greater flood risks at the
regional scale.
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Torrential rains induced by tropical cyclones (TCs) are a major
trigger of catastrophic flood hazards in many coastal regions

of the world (1–3). Flood risks in response to TC-induced rainfall
at a given location are not only dependent on rainfall intensity
but also the duration of TCs passing through the region (1, 4–7).
Observations and numerical climate model simulations have
both demonstrated that the maximum increase in TC-induced
rainfall rate can reach about 10% per degree Celsius of warm-
ing, suggesting potentially greater flood threats associated with
more intense TC-induced rainfall under climate warming (8–12).
On the other hand, some devastating TCs in recent years were
characterized with longer passage time (i.e., lower translation
speed) through a region, resulting in greater rainfall totals.
Hurricane Harvey stalled over Texas on 25–30 August 2017,
leading to unprecedented flooding and severe damages with a
2,000-y local TC rainfall total (3, 13, 14). Super Typhoon Mor-
akot, the deadliest typhoon in Taiwan in the recorded history,
lingered over Taiwan for over 30 h on 8–11 August 2009 and
brought about a record-breaking rainfall total of over 3,000 mm
(4, 6). A global slowdown of TC translation speed in the best-
track data has been recently reported (1, 15). However, com-
pared to the increase of TC rainfall intensity with relatively
higher confidence (10–12), the robustness and causative mech-
anisms of TC slowdown are still arguable (7, 15–19). This con-
troversy is mainly caused by the inhomogeneity in the observed
best-track data primarily due to the advancement in observation

techniques from the presatellite era to the postgeostationary-
satellite era (16–18).
For an individual TC event, the local rainfall total is pro-

portional to the rainfall intensity but inversely proportional to
the translation speed (1, 4, 6, 7). There have been some event-
based studies on the crucial role of slower translation speed and
longer duration in increasing TC-induced rainfall [e.g., Hurri-
cane Harvey and Typhoon Morakot (3, 4, 6, 13)]. However, over
a long-term period, the responses of TC-induced rainfall to
changes in TC characteristics appear highly stochastic and vari-
able at various temporal and spatial scales (15, 20). The impacts
of changes in TC translation speed on local rainfall totals in the
long run have received much less attention compared to the
effects of increased rainfall intensity (11, 12). Based on obser-
vations and simulations of eight Global Climate Models (GCMs)
in the Coupled Model Intercomparison Project Phase 5 [CMIP5
(21)], we herein examine the changes of landfalling TC trans-
lation speed from 1961 to 2017, and evaluate to what extent such
long-term changes have affected local rainfall totals over the
coastal regions of China, one of the most TC-prone regions in
the western North Pacific Ocean (Methods and SI Appendix,
Appendix A). The coastal regions of China support nearly half of
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the country’s population and a number of highly populous and
developed metropolises, such as the Pearl River Delta and
Yangtze River Delta, making the regions highly exposed and
vulnerable to TC-related hazards (22, 23). Simulated and ob-
servational evidence is of great importance for an improved
understanding of the compound effects of slow-moving TCs and
intensification of TC-induced rainfall on local flood risks.
We find that both the best-track data and the CMIP5 GCM

ensemble show significant and comparable decreases (−0.044 km/
h per year or a total of −11% in observations and −0.038 km/h
per year or a total of −10% in simulations, respectively) in the
translation speed of TCs that made landfall along China’s coast-
lines in 1961–2017 (Fig. 1A). As detailed in Methods and SI Ap-
pendix, Appendix B, the observed decreasing trend in this study
should be less affected by the sampling bias in the best-track data
compared to previous studies, because we exclude the TC track
points located far away from the coast (15). Furthermore, the
finding that the significant decreasing trends in the GCM-derived
TC translation speed are comparable to those estimated from the
best-track data adds more confidence in the slowdown of TCs over
the past decades (1961–2017 under the historical and Represen-
tative Concentration Pathway 4.5 (RCP4.5) scenarios in Fig. 1A,
and 1961–2005 under the historical scenario only in SI Appendix,
Appendix C).
In our analyses of the impacts of TC slowdown on local rainfall

totals, we first examine the long-term and overall changes in TC-
induced rainfall totals during the study period. As shown in
Fig. 1 B and C, both the annual mean and the 90th percentile of
total rainfall per TC exhibited increasing trends over the period
of 1961–2017. Moreover, the 90th percentile of the total rainfall
increased significantly by 18% from 187 mm in 1961–223 mm in
2017. The increasing trends in TC-induced rainfall amounts are
consistent with those reported in previous studies using different
datasets or TC detection methods (24–26). Next, we analyze the
correlations between TC translation speed and local rainfall total
of individual TCs. Fig. 2 shows the general spatial pattern of
negative Spearman correlations for TCs with rainfall intensities ≥
30 mm/d, which confirms the inverse relationship between TC
translation speeds and local rainfall totals. To further verify this
pattern, we evaluate these negative correlations for TCs with
rainfall intensities in other ranges and find that the pattern is
consistent and the inverse relationships are even stronger for TCs
causing more intense rainfall (SI Appendix, Appendix D). We
obtain similar results in the analysis based on the Pearson corre-
lation (SI Appendix, Appendix D). The above spatial patterns
consistently indicate that the inverse relationships are statistically
significant and tend to be stronger at more locations in southern
China. Therefore, we select the highly populated and developed
Pearl River Delta city region (see Fig. 2 for its location) as our
focus to analyze how translation speed affects the local rainfall
total of TC events generating rainfall of different intensities. The
scatter plot in Fig. 3A exhibits the influence of TC translation
speed in modulating local TC rainfall totals. The Spearman cor-
relation coefficient reaches −0.53 for the TC events generating
rainfall of more than 30 mm/d. Fig. 3A also shows that TC events
with similar rainfall intensities produce higher rainfall total when
the TC moves at a lower translation speed. It is evident that TC
events with high rainfall intensity and low translation speed bring
about the largest local rainfall totals (the scatter points in the
upper left) and those with high translation speed generally pro-
duce less rainfall (the scatter points in the bottom right).

Fig. 1. Temporal evolution of annual-mean TC translation speed (km/h) and
accumulated rainfall induced by TCs (mm) over the coastal areas of China
from 1961 to 2017. (A) Annual-mean TC translation speed based on the best-
track data (black) and the multimodel ensemble mean of CMIP5 GCMs (red).
(A) The annual-mean TC translation speed in GCMs is extended to 2017 using
the RCP4.5 scenario (right side of the vertical dashed line) from 1961 to 2005
under the historical scenario (left side of the vertical dashed line, refs. 45 and
46). The slowdown of TCs in GCMs is also significant in 1961–2005 under the
historical scenario only without extension (SI Appendix, Appendix C and Fig.
S3). (B) Annual-mean and (C) the 90th percentile of the areal-averaged

rainfall totals of TCs, respectively. In A, B, and C, solid straight line indicates
the trend is significant at the 95% level based on the modified Mann–
Kendall test, while dashed straight line means the trend is insignificant. Sen’s
slope is shown.
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Furthermore, Fig. 3B shows that 10 out of 14 recorded TCs
(marked with squares) with translation speed ≤ 15 km/h and
rainfall intensity ≥ 30 mm/d occurred after 1990, and 3 of them
produced rainfall totals of more than 200 mm in the Pearl River
Delta, indicating a substantial increase of flood risks caused by
TCs with low translation speeds in this region in recent years.
Finally, we compare the probability density functions (PDFs)

and cumulative distribution functions (CDFs) of the local rainfall
totals induced by slow- (≤ 15 km/h) and fast-moving (≥ 25 km/h)
TCs and find that slow-moving TCs are more likely to generate
high local rainfall totals (Fig. 4). The occurrence probabilities of
local rainfall totals larger than 200 mm induced by slow-moving
TCs are higher than those associated with fast-moving TCs. The
PDF curve of rainfall totals of slow-moving TCs is wider than

that of fast-moving TCs, suggesting that slow-moving TCs may
produce more extreme rainfall totals to a region as indicated by
the longer and higher right tail. The CDF curves also show slow-
moving TCs are more likely to generate higher local rainfall
totals. The mean local rainfall totals of slow- and fast-moving
TCs are 99.1 and 80.5 mm, respectively. In other words, slow-
moving TCs produce about 20% more rainfall on average than
fast-moving events.
Our work reveals that both the observed best-track data and

the multimodel ensemble of CMIP5 GCMs suggest a significant
slowdown of TCs (−0.044 km/h per year in observations
and −0.038 km/h per year in simulations, respectively) over the
coastal areas of China from 1961 to 2017. The agreement of the
observations and simulations provides more confidence in the
trend of TC slowdown. To explore the possible linkage between
climate change and the trends of TC translation speed, we
conduct a detection and attribution analysis using the optimal
fingerprinting method (27–30) based on the historical simula-
tions driven by ALL forcing (anthropogenic and natural radiative
forcings) and NAT forcing (solar and volcanic combined), as well
as preindustrial control runs of CSIRO-Mk3-6–0, the only
CMIP5 GCM that provides complete 6-hourly outputs of these
forcings and passes the residual consistency test (ref. 31 and SI
Appendix, Appendix E). The detection result indicates that it is
probable (90% significance level) that there is a climate change
component associated with anthropogenic forcing in the ob-
served TC slowdown. However, there are caveats arising from
the effects of the uncertainties associated with GCMs on the
detection result, and we consider further detection and attribu-
tion analyses based on multiple climate model simulations are
necessary. In this study, we focus on the impacts of TC slowdown
on local rainfall totals and our analyses show slower TCs tend to
generate more rainfall over a given region. Specifically, as TC
translation speeds decreased, the mean and the 90th percentile
of TC-induced local rainfall totals exhibited increasing trends
from 1961 to 2017. There are significant inverse correlations
between local rainfall totals and TC translation speeds over the
study period. The comparison of the PDFs of local rainfall totals
induced by slow- and fast-moving TCs further indicate that slow-
moving TCs are more likely to generate larger rainfall amounts.
Therefore, this study highlights the evidence of TC slowdown in
potentially elevating local rainfall totals and the associated
greater flood risks, and therefore provides scientific support for
better flood management and adaptation strategies in coastal
regions under the threats of TCs.

Fig. 2. Spatial pattern of correlation coefficients of translation speeds and
local rainfall totals of individual TCs over the coastal areas of China. Only TCs
with rainfall intensity (mm/d) ≥ 30 mm/d and areas that have at least four
TCs with rainfall intensity ≥ 30 mm/d are considered. Stippled regions rep-
resent areas with Spearman correlation coefficients significant at the 95%
level. The red box indicates the location of the Pearl River Delta.

Fig. 3. Relationship of translation speed (km/h), local rainfall total (mm), rainfall intensity (mm/d), and year of occurrence of individual TC events that made
landfall over the Pearl River Delta. (A) Scatter plot of translation speeds and local rainfall totals of individual TCs. (B) Temporal evolution of translation speeds
and local rainfall totals of individual TCs. Size of circles indicates rainfall intensity. In A, colors indicate the years the TCs occurred, and in B colors indicate the
translation speeds. The black curve shows that total rainfall is inversely proportional to translation speed for TCs with rainfall intensity ≥ 30 mm/d. The
Spearman (−0.53) correlation coefficient of local rainfall totals and translation speed is calculated based on TCs with rainfall intensity ≥ 30 mm/d. “*” indicates
the coefficient is significant at the 95% level. Squares in B highlight the TCs with translation speed ≤ 15 km/h and rainfall intensity ≥ 30 mm/d.
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Methods
Estimation of TC Translation Speed. The study area is defined as the landside
area within 200 km from the coastline of mainland China, because the
contribution of a TC to rainfall decreases sharply as the distance from
coastline increases. When the distance exceeds 200 km, the contribution
drops below 10% (32, 33). Best-track data covering the western North Pacific
during 1961–2017 are taken from the International Best Track Archive for
Climate Stewardship (IBTrACS) archive (34). TC positions located within
200 km on both sides of the coastal study area are considered in this study.
Translation speed is calculated by dividing the distance between every two
neighboring positions along a TC track by the 6-hourly interval following ref.
1. The distance between track points is computed along a great circle arc.
Over-land positions are determined using the 2-Minute Gridded Global
Relief Data, a high-resolution global topography map (ref. 35 and see Data
Availability). It should be noted that a translation speed is considered as over
land whenever one track point is located on land and otherwise it is
considered as over sea.

Identification and Tracking of TCs in GCM Simulations. TCs in CMIP5 GCMs are
identified and tracked using the Camargo and Zebiak algorithm (36, 37). This
algorithm is an objective method searching TCs in GCMs based on sea-level
pressure, temperature at three pressure levels (850, 500, and 250 hPa), and
winds at two pressure levels (850 and 250 hPa). In the CMIP5 archive, only
GCMs with 6-hourly outputs of the above variables and with detected
landfalling TCs in the study area in more than 30 y are selected. A total of
eight GCMs, namely CSIRO-Mk3-6–0, GFDL-ESM2M, GFDL-CM3, HadGEM2-
ES, MIROC5, MPI-ESM-LR, MRI-CGCM3, and NorESM1-M, are chosen for an-
alyzing the changes in TC translation speed (SI Appendix, Table S1). The
algorithm includes two parts: detection and tracking. In the detection part,
potential TC points are identified based on four criteria: 1) relative vorticity
at 850 hPa (ζ850) exceeds the vorticity threshold (ζm); 2) maximum wind
speed at 850 hPa exceeds the wind speed threshold (vm); 3) vertically in-
tegrated local temperature anomaly exceeds the temperature anomaly
threshold (Tm); and 4) genesis location locates in the tropics (30°S–30°N) over
the ocean. Afterward, the potential TC points are connected by time if they
are less than a certain distance that depends on the spatial resolution of
model outputs. Only TCs lasting for more than 2 d are considered. In the
tracking part, the first TC center is defined as the vorticity centroid of the
vorticity matrix around the initial TC point identified in the detection part.
The next TC center is the location of vorticity centroid in the next time step
in nearby grid point. This process is repeated until the vorticity value is be-
low a relaxed vorticity threshold (ζr) which is lower than the vorticity
threshold value in the detection part. The tracking procedure is performed
for each TC detected in the detection part. These thresholds are determined
objectively by the joint probability distribution of these environmental
variables in a given basin (western North Pacific for this study): the vorticity
threshold is defined as twice the vorticity SD; the wind speed threshold is the
sum of oceanic global wind speed and the SD of wind speed in each basin;
the temperature anomaly threshold is calculated as the SD of integrated
local anomalous temperature. The values of the four thresholds in the
western North Pacific for the eight GCMs provided by Camargo (37) are
listed in SI Appendix, Table S2.

Calculation of TC-Induced Rainfall. The observed gridded daily precipitation
dataset of 1961–2017 at the 0.5° × 0.5° resolution is collected from the
National Meteorological Information Center (NMIC) of China Meteorological

Administration (CMA; see Data Availability). This dataset was reproduced
from the observations of 2,474 meteorological stations in China using the
Thin Plate Spline method (38, 39). As suggested by ref. 33, TC-induced
rainfall is defined as rainfall that occurs within 200 km of TC center from
1 d before to 1 d after the passage of a TC. Total rainfall of a TC in a given
grid is the sum of rainfall amount in this grid (i.e., within 200 km from the TC
center) during the whole period affected by this TC:

Total rainfall = ∑
n

i=1
Ri , [1]

where n is the number of days on which the given grid is affected by the TC,
and Ri is the rainfall amount (mm) in this grid on day i. The rainfall intensity
in a given grid of a TC is calculated as follows:

I = ∑n
i=1Ri

n
, [2]

where I is the rainfall intensity (mm/d) of this TC in this grid.

Correlation Analysis. The correlation between TC translation speed and local
total TC rainfall is estimated using Spearman and Pearson correlation coef-
ficients (40, 41). The correlation coefficients are calculated for individual TC
events. The increase of total rainfall amount is less sensitive to rainfall du-
ration when rainfall intensity is low. Thus, only TCs with rainfall intensity ≥
30 mm/d are considered for the calculation of correlation coefficient. In
addition, only grids that have at least four passages of TCs (i.e., within
200 km of TC center) are considered in this study. The correlation coefficients
based on TCs with rainfall intensity ≥ 10, 20, 40, and 50 mm/d are calculated
to detect and verify the inverse relationships between TC translation speed
and local rainfall total (SI Appendix, Appendix D).

Probability Distribution of Slow- and Fast-Moving TCs. Slow- and fast-moving
TCs are defined as those with translation speed ≤ 15 km/h and ≥ 25 km/h,
respectively, which are very close to the first and third quartile of the
translation speeds of all TCs analyzed in this study. The differences between
local rainfall caused by slow- and fast-moving TCs are examined by the two-
sample Student’s t test (42). Because weak TCs such as tropical depressions
and tropical storms may bring limited rainfall but move slowly, those TCs
with maximum wind speed < 65 kn are excluded when defining the slow-
and fast-moving TCs in the probability analysis. The threshold of 65 kn is
determined by the mean of maximum TC wind speed of the TCs analyzed.

Trend Detection. The significance of the trend in a time series is examined
using the Modified Mann–Kendall test, a nonparametric trend detection
method considering autocorrelation in time series (43). The magnitude of
the trend in a time series is estimated using the Sen’s slope method (44). The
percentage change in the study period is calculated by dividing the differ-
ence between the values of the last year and the first year of the trend line
by the value of the first year.

Data Availability. The tropical cyclone data in this study are collected from the
International Best Track Archive for Climate Stewardship (IBTrACS; https://www.
ncdc.noaa.gov/ibtracs/). TC track positions over land are determined based on
the 2-Minute Gridded Global Relief Data (ETOPO2v2; https://www.ngdc.noaa.
gov/mgg/global/etopo2.html). CMIP5 model outputs are available in the Earth
System Grid Federation (ESGF) Peer-to-Peer system (https://esgf-node.llnl.gov/

Fig. 4. Statistical distributions of local rainfall totals produced by slow-moving TCs (translation speed ≤ 15 km/h; blue) and fast-moving TCs (translation
speed ≥ 25 km/h; red) in the coastal areas of China. (A) PDFs of local rainfall totals. (B) Cumulative distribution functions of local rainfall totals.
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projects/esgf-llnl/). The gridded daily precipitation data of China are obtained
from the National Meteorological Information Center (NMIC) of China (data.
cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_PRE_DAY_GRID_0.5.html).
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